数控机床信息管理系统

	完成单位		江南大学			学院	机械工程				
联系方式	通讯地址		江苏省无锡市蠡湖大道 1800 号			邮编	214122				
	成果完成人		张秋菊	职称/职务	教授	电 话					
	联系人		陈进	职称/职务	副教授	电 话					
	手机		1391529	传真	0510-8591058	E-mail	chenjinwx@126.co				
	6.79 ÷ 1- 17/ 15		7120	1 + 10	3		m n				
成果基本情况	知识产权形式		☑ 发明专利 □ 实用新型专利 □ 外观设计专利 □ 其他 1、申请专利 8 项 2、已授权专利 2 项								
	专利状况		- 10	1、甲項专		2、匕扠仪					
	授权专利情况		项数		专利名称		专利号				
				车间加工设备群加工运行优化的方法			200910031198.9				
			2	数控机床刀具的在线管理方法		方法	201010129780.1				
	N H //	1 -H -T / N	☑新技术	□新工艺	☑新产品	□新材料	□新装备				
	成果体	地现形式	口农业、生	生物新品种	□矿产新品	品种	□其他应用技术				
			☑电子信息	息 □能源环	保 □装备制造	□生物技	术与新医药 □新材料				
		葛领域	□农业食品科技 □海洋技术 ☑其他								
	技术成熟程度		□研制阶段	没 □试:	生产阶段 [□小批量生					
			☑批量生产阶段 □其他								
		一、简	要综述								
		获行	得教育部新世纪优秀人才计划、江苏省科技计划、无锡市科技计划支持,获								
		得 2011	年中国商业联合会科技进步三等奖。								
		二、具	体介绍								
		1、项目									
			解决数控机床程序传输、程序管理、机床的利用率低等问题。通过建立 DNC								
		网络,覆盖设备层、车间层、工艺层和管理层。实现以下功能:									
		(1) 在服务器和数控机床之间随时调用和回传数控程序;									
		(2) 记录数控机床的状态。包括加工的零件名称、加工起止时间等信息;									
成果简介		(3) 刀具管理。实际记录刀具的调用时间、位置,查询刀具的配置信息;									
		(4) 数控程序的管理。实现数控程序的编辑、修改、审批、存储、调用、回传、对									
		比、控制等功能。									
		2、创新要点									
			采用传感器采集机床状态数据,可对不同厂家、型号、不同数控系统进行状态								
			判定和数控程序传送,有多种接口技术、通讯方式,具有良好的适应性和通用性;								
		可与制造执行系统(MES)和制造资源计划(ERP)进行集成。									
		3、效益分析(资金需求总额 1 万元/台)									
		对具备 10 台机床的小型车间而言,每年净提高产值 100 万元以上。 4、推广情况									
			情况 易市安迈工程机械有限公司;无锡压缩机股份有限公司。								
		ノムす	勿	E机械有限公司; 尤物压缩机放切有限公司。 □自主开发生产产品 □技术入股与合作							
合作需求		合	作方式		· 及生/ / iii □1; 让 ☑ 技						