# 食品安全快速检测新技术及新产品

|   | 完成单位    | 食品学院                      |              |                                             |        |                 |  |  |
|---|---------|---------------------------|--------------|---------------------------------------------|--------|-----------------|--|--|
| 联 | 通讯地址    | 江苏省无锡市蠡湖大道 1800 号         |              |                                             | 邮编     | 214122          |  |  |
| 系 | 成果完成人   | 胥传来                       | 职称/职务        | 教授                                          | 电 话    | 0510-85329076   |  |  |
| 方 | 联系人     | 胥传来                       | 职称/职务        | 教授                                          | 电话     | 0510-85329076   |  |  |
| 式 | 手机      | 13906189                  | 传真           | 0510-853290                                 | E-mail | xcl@jiangnan.ed |  |  |
|   | , , , - | 150                       | ., ,,        | 76                                          |        | u.cn            |  |  |
|   | 知识产权 形式 | ☑发明专利 □实用新型专利 □外观设计专利 □其他 |              |                                             |        |                 |  |  |
|   | 专利状况    | 1、申请专利 100 项 2、已授权专利 30 项 |              |                                             |        |                 |  |  |
|   | 授权专利    | 项数                        | 专利名称         |                                             |        | 专利号             |  |  |
|   |         |                           | 一种通用型毒素纸质检测  |                                             |        | 200910183680.4  |  |  |
|   |         |                           | 传感器的         | 的制备及应用                                      | 2      | 200710103000.4  |  |  |
|   |         |                           | 沉淀-氧化        | 法制备葡聚糖四                                     | 1      |                 |  |  |
|   |         |                           | 氧化三铁磁性纳米粒子及  |                                             | _ 2    | 200910181247.7  |  |  |
| 成 |         |                           | -            | 其应用                                         |        |                 |  |  |
| 果 |         |                           | 一种β-内酰胺类药物通用 |                                             |        | 200810123017.0  |  |  |
| 基 |         |                           | 人工抗力         | 原的合成方法                                      |        | 200010123017.0  |  |  |
| 本 |         |                           | 一种地赛         | 米松人工抗原的                                     |        | 200710135242.1  |  |  |
| 情 |         |                           | 制备方法         |                                             |        |                 |  |  |
| 况 |         |                           |              | 可硝西泮人工抗原的制                                  |        | 200710022543.3  |  |  |
|   |         |                           |              | 备方法<br>———————————————————————————————————— |        |                 |  |  |
|   |         |                           | . , ,        | 腊酸酯特异性抗                                     |        |                 |  |  |
|   |         |                           | 体的制备及该抗体用于同  |                                             | 2      | 200710022047.8  |  |  |
|   |         |                           | 源或异源         | 海联免疫分析的                                     | 1      |                 |  |  |
|   |         |                           |              | 方法                                          |        |                 |  |  |
|   |         |                           |              | <b>氰胺人工抗原的</b>                              |        | 200810234130.6  |  |  |
|   |         |                           |              | ·成方法<br>·工工·工·拉·原·纳                         | 1 2    | 200010021724.0  |  |  |
|   |         |                           | 一种办什约        | III 人工抗原的                                   | 2      | 00910031726.0   |  |  |

| 合成方法              |                |
|-------------------|----------------|
| 一种柠檬黄人工抗原的合       | 200910031725.6 |
| 成方法               | 200710031723.0 |
| 一种金纳米粒子比色法快       |                |
| 速检测奶粉中三聚氰胺含       | 201010196970.5 |
| 量的方法              |                |
| 一种同时检测牛奶中多种       |                |
| 酞酸酯的液质联用测定方       | 200910027606.3 |
| 法                 |                |
| 一种微囊藻毒素-LR 的免     | 200810022245.9 |
| 疫荧光猝灭检测方法         |                |
| 一种具有表面增强拉曼活       |                |
| 性的自组装材料的制备方       | 201010605799.9 |
| 法                 |                |
| 石榴状磁性纳米粒子聚集       |                |
| 体的制备及其在 DNA 分离    | 201010101763.7 |
| 纯化中的应用            |                |
| 一种基于金磁纳米粒子的       | 200910232340.6 |
| 载药平台的构建与应用        |                |
| 一种 3-甲基-喹啉-2-羧酸的  | 200810022033.0 |
| 免疫荧光猝灭检测方法        |                |
| <br>  一种地西泮人工抗原的制 |                |
| 备方法               | 200710135000.2 |
|                   |                |
| 一种氨基脲的衍生物氨基       |                |
| 脲缩对醛基苯甲酸的合成       | 200710022542.9 |
| 方法                |                |
| 一种 3-甲基-喹啉-2-羧酸的  | 200710019665.7 |
| 制备方法              |                |

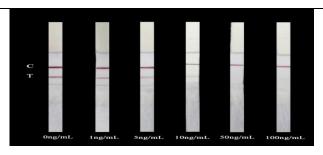
|        | 1 |                                              | 1            |                        |
|--------|---|----------------------------------------------|--------------|------------------------|
|        |   | 一种二甲氧基磷酸<br>药通用半抗原的合                         |              | 200710134520.1         |
|        |   | 一种 4-氨基丁酸缩                                   | 6 菊酸         | 200810019046.2         |
|        |   | 半抗原的合成之                                      |              | 200710135301.5         |
|        |   | 酸酯的合成方一种 1-氨基乙内酰                             |              | 200810019047.7         |
|        |   | 抗原的制备方                                       |              | 200810019047.7         |
|        |   | 一种双氟米松人工<br>制备方法                             | -            | 200710135244.0         |
|        |   | 一种临床磁共振成<br>庆大霉素的方                           |              | 200910027067.3         |
|        |   | 一种氨基糖苷类药<br>人工抗原的合成                          |              | 200810123015.1         |
|        |   | 一种同时检测 19 日                                  | 2 喹诺酮        | 200010022257.4         |
|        |   | 类药物的 HPLC MS/MS 测定力                          |              | 200810022357.4         |
|        |   | 一种邻苯二甲酸二<br>工抗原的制备:                          |              | 200810022244.4         |
|        |   | 一种具有氨基糖苷 多抗原决定簇人工                            |              | 200810123016.6         |
|        |   | 合成方法<br>一种喹诺酮类抗生<br>抗原的合成方                   | ., , , , , , | 200710134500.4         |
| 成果体现形式 |   |                                              |              | l新材料 □新装备<br>中 □其他应用技术 |
| 所属领域   |   | <ul><li>□ 世級 下保 [</li><li>□ 农业食品科技</li></ul> |              | □生物技术与新医药<br>术 ☑其他     |
|        | , |                                              |              | ·                      |

技术成熟 □研制阶段 □试生产阶段 □小批量生产阶段 程度 ☑批量生产阶段 □其他\_\_\_\_\_

# 一、简要综述

科研用核心试剂产业化示范(2009BAK61B04)"十一五"国家科技支撑计划;食品安全快速检测技术及装备的开发(2010DFB30470)国际科技合作项目;食源性致病菌荧光纳米快速识别技术研究(2009IK129)国家质检总局科研项目;有机磷类和拟除菊酯类农药多残留免疫检测技术(2006AA10Z450)863 计划;食品中激素类残留物酶联免疫快速检测试剂盒的中试(2007GB2C100110)国家农业科技成果转化;化学残留物检测技术与设备研究(2006BAK02A09)国家"十一五"科技支撑;乳品质量安全控制关键技术研究及开发(2006BAD04A08)国家"十一五"科技重大项目。

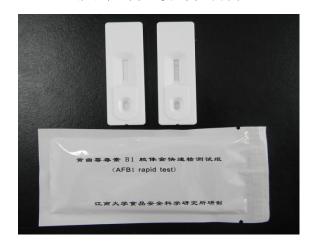
二、具体介绍


## 1、项目简介

# 成果简介

本项目运用免疫学方法和原理,结合最新的纳米科学技术,研制和开发食品安全检测新技术和新产品。目前已成功开发针对拟除虫菊酯类、三聚氰胺、黄曲霉毒素、赭曲霉毒素、莱克多巴胺、双酚 A、邻苯二甲酸酯类、重金属铅、重金属镉、罗丹明 B、赤藓红、碱性橙、磺胺类、牛奶过敏原、花生过敏原、金黄色葡萄球菌、大肠杆菌 O.157 等多种抗原抗体、ELISA 免疫检测试剂盒、胶体金快速检测试纸条、免疫亲和柱以及基于碳纳米管材料的新型超灵敏检测传感器。




ELISA 检测试剂盒



胶体金快速检测试纸条



菊酯农药快速检测试纸条



黄曲霉毒素快速检测试纸条



黄曲霉毒素免疫亲和柱

### 2、创新要点

本研究所研制的 ELISA 试剂盒、胶体金试纸条等产品,性能达到国 际领先水平, 部分产品为独家产品, 而价格仍与一般的国产试剂持平, 性 价比突出。具有广泛的应用和推广价值。

## 3、效益分析(资金需求总额 500 万元)

随着集约化畜牧业的发展, 兽药的作用范围也在扩大, 有的药物如抗 生素、确胺药、激素等已广泛应用于内用畜禽的生长、减少发病率和提高 饲料利用率、促进母奋同期发情等。在饲料添加剂中抗生素用量占有相当 大的比重。兽药的广泛使用带来的不仅仅是畜牧业的增产,同时也带来了 兽药的残留。随着政府对兽药残留检测力度的增强,可以断定兽药残留检 测试剂的需求量将有一个大幅度的增长。

由于近年来奶和肉类产量近年来平稳上升, 再加之出台的各项政策, 所以未来几年乳业和肉制品行业仍将出现上升趋势,因此对检测试剂的需 求也会随之上升。按国家统计数据,我国目前各种食品动物的年总产量分 别为猪 10 亿头, 牛羊 2.8 亿头, 禽 100 亿只。若按百分之一比例随机抽 取做残留监测,则我国每年要测定约1.1亿头份畜禽。如果全部使用试纸 条,按试纸条成交价10元计算,那么产值有11亿。

中国人口众多,食品安全问题和环境问题严重,中国本土具有潜在的 巨大市场。特别是三聚氰胺奶粉事件,给中国乳品行业带来了巨大危机, 正所谓危机产生机遇,加之现在废弃了食品免检制度,政府和企业必将对 食品安全检测产品具有巨大的需求。

#### 4、推广情况

目前本研究所的原料已经成功被北京华安麦科生物技术有限公司、上 海柏纳生物技术有限公司,深圳绿诗源生物技术有限公司所采用,并且合 作生产了部分产品,已经成功在市场推广。

获中国包装科技进步奖二等奖、山东省科技进步奖三等奖、中国包装 联合会"2011中国包装产学研合作精品项目"。

合作需求

合作方式

☑自主开发生产产品 ☑技术入股与合作

团技术转让

☑技术服务 □ 其它